

CALICUT UNIVERSITY – FOUR-YEAR UNDERGRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry					
Course Title	INORGANIC CHE	MISTRY I				
Type of Course	MAJOR/MINOR					
Semester	Ι					
Academic Level	100-199					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites	Scope of chemistry, Interdisciplinary areas involving chemistry. Fundamentals of periodic properties of elements, Atoms and molecules, Need for chemical bonding and its types, Awareness on nature of experiments and health risk, hazard associated with chemicals, Mole					
Course Summary	This course explores the importance of chemistry as a central discipline of science. It introduces the periodic properties of elements, concept of chemical bonding and explanation of inorganic molecular structure using hybridization and MO theory. A few basic topics of the emerging area of Nanochemistry are also introduced in this course. The basic laboratory safety, concepts in volumetric analysis and related practical experiments are also covered.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the role of chemistry in science and scientific research with emphasis on analytical data evaluation	U	C	Instructor- created exams/ Quizzes/Assignments
CO2	Conceptualize and predict chemical bonding, molecular structures using	An	Р	Instructor- created exams/ Quizzes/assignments

	dipole moment, hybridisation, and MO Theory						
CO3	Develop a basic understanding of the extraordinary properties of nanomaterials and its applications.	U	С	Instructor- created exams/ Quizzes/Assignments			
CO4	Apply the concepts of lab safety measurements and volumetric analysis	Ар	М	Instructor- created exams/ Assignments/problem solving			
CO5	Enable students to develop analytical skills in inorganic quantitative volumetric analysis.	Ар	Р	Group work /Viva Voce// Observation of practical skill			
* - Re	emember (R), Understand (U), Apply (A	Ap), Analyse	(An), Evaluate	(E), Create (C)			
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Know	vledge (M)						

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
		(45+30)		
Ι	CI	HEMISTRY AS A SCIENCE DISCIPLINE &	8	17
	1	Science- Chemistry as a branch of science, History of	1	
		chemistry, Involvement of chemistry in daily life		
		(Mention only)		
	2	Introduction to analytical chemistry, Classification of	1	
		analytical methods: Qualitative and Quantitative		
		analysis (Mention with examples)		
	3	3		
		Accuracy – Precision – Methods of representing		
		Accuracy, Absolute error, Relative error, Types of		
		errors, Constant errors, Proportional errors, Correction		
		of determinate errors		
	4	Methods of representing Precision -Mean, Average	3	
		deviation, Standard deviation, Relative standard		
		deviation, Coefficient of variation, Variance,		
		Rejection of a result: Q test, Methods of least squares		
II	C	HEMICAL BONDING AND MOLECULAR	17	38
		STRUCTURE		
	5	Periodic Properties and their Periodic Trends: (a)	2	
		Atomic and Ionic radius (include isoelectronic species		
		in discussion) (b) Ionisation energy: (c) Electron		

		affinity (d) Electronegativity (Pauling, Mulliken		
		Allred & Rochow scales).		
	6	Classification of bonds: Ionic bond - Definition,	1	
		Factors affecting the formation of ionic bond.		
		Characteristics of ionic compounds. Lattice energy		
	7	Born Haber cycle - Born Lande equation (derivation	2	
		not needed) - Covalent –(Mention polar and non polar		
		compounds) and Coordinate bond		
	8	Dipole moment and its applications: (Prediction of	2	
		linearity and symmetry of polyatomic molecules,		
		Prediction of position of substituents in aromatic		
		compounds, Measurement of bond angle)		
	9	Covalent Bond, Lewis concept of covalent bond,	2	
		Atomic orbital overlap, Concept of covalency,		
		Variable covalency and Maximum covalency		
	10	Prediction of Covalent character in ionic bond using	1	
		Fajans rule. Prediction of Ionic character in Covalent		
		bond using Hannary Smidth equation.		
	11	Structure of molecules by the concept of	3	
		Hybridisation: NO ₃ ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , IF ₇ , XeO ₃ , XeO ₄ ,		
		XeF ₂ , XeF ₄ , XeF ₆ , ClF ₃ , BrF ₅ , SF ₄		
	12	Introductory MO Theory: Homoatomic molecules in	4	
		N_2 and O_2 and their ions (comparison of bond order,		
		bond length and stability), MO Theory: Heteroatomic		
		molecules like NO, CO, HCl, HF, LiF.		
III]	INTRODUCTION TO NANOMATERIALS	10	21
	13	Definition of Nanomaterials, Historical revolution of	2	
		Nanochemistry, Nanochemistry and		
		Nanotechnology, Classification of nanostructures		
		based on electron confinement (0D, 1D and 2D)		
	14	Synthesis of Nanomaterials: Bottom Up and Top	1	
		down approaches (Elementary idea with examples)		
	15	Metal nanoparticles (gold and silver nanoparticles),	2	
		Semiconductor nanoparticles (CdS and CdSe		
		nanoparticles), Metal oxide nanoparticles (zinc oxide,		
		iron oxide, silica and titania nanoparticles),		
		Nanocomposites, Nanoceramics (Definition with		
		examples), Carbon Based Nanomaterials: Graphene,		
		Carbon Nanotubes, Fullerenes, Carbon dots		
		(elementary idea only)		
	16	Characteristics of Nanomaterials: Surface area to	2	
-	10	Characteristics of Ivanomaterials. Surface area to	3	
	10	volume ratio and its significance, Novel properties of	3	

		plasmon resonance), Electronic, Mechanical,		
		magnetic and catalytic properties (No deep discussion		
		is needed)		
	17	Applications of nanomaterials: Electronics (Batteries,	2	
	17	Solar cell) Biomedical (Drug Delivery) and	-	
		Environmental based applications (Water		
		Purification Dye Removal) (General idea only)		
IV	FUND	DAMENTALS OF ANALYTICAL CHEMISTRY	10	22
	18	Lab safety measurements: Awareness of material	2	
		safety data sheet (MSDS), Safe storage and handling		
		of hazardous chemicals. Simple first aids: Electric		
		shocks fire. Cut by glass and inhalation of poisonous		
		gas.		
	19	Accidents due to acids and alkalis. Burns due to	1	
		phenol and bromine. Disposal of waste chemicals.	-	
		Disposal of sodium and broken mercury thermometer		
		-R and S phrases (elementary idea only). Personal		
		protective Equipment (PPE)		
	20	Mole concept - Equivalent mass - Methods of	2	
		expressing concentration: Weight percentage.	_	
		molality molarity normality mole fraction ppm and		
		millimoles - Numerical Problems related to basic		
		concepts.		
	21	Volumetric Analysis: Introduction - Primary and	3	
		secondary standards – Standard solutions – Theory of		
		titrations involving acids and bases.		
		Permanganometry, Dichrometry, Iodometry,		
		Iodimetry Precipitation and Complexometric		
		titrations.		
	22	Indicators: Theory of acid-base, redox, adsorption and	2	
		complexometric indicators. Double burette method of		
		titration: Principle and advantages.		
V	INORGA	ANIC CHEMISTRY PRACTICAL I-	30	
		VOLUMETRIC ANALYSIS		
	1	General Instructions: Use a safety coat, gloves,		
		shoes and goggles in the laboratory. For weighing		
		electronic balance must be used. Double burette		
		titration method may be used for titrations. Standard		
		solution must be prepared by the student. A minimum		
		of 7 experiments must be done from Section B and C.		

Section D is open-ended and the experiments can be
selected by the teacher
SECTION A
Importance of lab safety – Burns, Eye accidents,
Cuts, Gas poisoning, Electric shocks, Treatment of
fires, Precautions and Preventive measures.
Weighing using electronic balance, Preparation of
standard solutions.
SECTION B
Neutralization Titrations
1. Acidimetry and Alkalimetry: Strong acid Vs
Strong base
2. Acidimetry and Alkalimetry: Strong acid Vs
Weak base
SECTION C
Redox Titrations
1. Permanganometry: Estimation of $Fe^{2+}/FeSO_{4}$.
7H2O/Mohr's salt
2. Permanganometry: Estimation of Oxalic acid
3. Permanganometry: Estimation of Calcium using
std KMnO4
4. Dichrometry: Estimation of $Fe^{2+}/FeSO_{4.}$ 7H2O
/Mohr's salt
5. Dichrometry: Estimation of Ferric iron
6. Iodometry and Iodimetry: Estimation of Copper
7. Iodometry and Iodimetry: Estimation of Iodine
SECTION D
Open Ended (Any two experiments are to be
conducted. may be selected from the below list or
the teacher can select related experiments)
1. Determination of acetic acid content in vinegar
by titration with NaOH.

2. Determination of alkali content in antacid tablets	
by titration with HCl.	
3. Determination of available chlorine in bleaching	
Powder.	
4. Estimation of Cu in Brass	

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd, Hyderabad, 1999
- 2. George Gamow, One, Two, Three...Infinity: Facts and Speculations of Science, Dover
- 3. Publications, 1988.
- 4. Resonance Journal of Science Education, Indian Academy of Sciences.
- 5. Nature Chemistry, Nature Publishing Group.
- 6. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 7. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical
- 8. Chemistry, 8th Edn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.
- 9. B. R. Puri, L. R. Sharma, K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 10. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 11. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008
- 12. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 13. J. E. Huheey, E. A. Keitler, R. L. Keitler, *Inorganic Chemistry Principles of Structure and Reactivity*, 4th Edn., Pearson Education, New Delhi, 2013.
- C.N.R., Rao, A. Müller, and A.K. Cheetham, (Eds.), "Chemistry of Nanomaterials", Wiley – VCH. 2005
- 15. T., Pradeep, *A Textbook of Nanoscience and Nanotechnology*, McGrawhill, New Delhi, 2012.
- 16. M. A. Shah, Tokeer Ahmad, *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House, New Delhi, 2010.
- 17. V. S. Muralidharan, A. Subramania, *Nano Science and Technology*, CRC Press, London.
- 18. R. H. Hill, D. Finster, *Laboratory Safety for Chemistry Students*, 1st Edn., Wiley, Hoboken, NJ, 2010.

Further Reading

- 1. H. Collins, T. Pinch, *The Golem: What Everyone Should Know about Science*, Cambridge University Press, Cambridge, 1993.
- 2. C.R. Kothari, Research Methodology: Methods and Techniques, 2nd Revised Edition,

New Age International Publishers, New Delhi, 2004.

- 3. http://www.vlab.co.in
- 4. http://nptel.iitm.ac.in
- 5. D. F. Shriver, P. W. Atkins, *Inorganic Chemistry*, 5rd Edn., Oxford University Press, New York, 2010.
- 6. M. C. Day, J. Selbin, *Theoretical Inorganic Chemistry*, East West Press, New Delhi, 2002.
- 7. G. L. Miessler, D A. Tarr, Inorganic Chemistry, Pearson, 2010
- 8. K.J. Klabunde (Ed.), "Nanoscale Materials in Chemistry", John Wiley & Sons Inc. 2001
- 9. G., Schmidt, Nanoparticles: From theory to applications –Wiley Weinheim 2004.

	PSO 1	PSO 2	PSO 3	PSO	PSO	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C O 1	3			2	1	1	3				3	1	1
C O 2	2	2					2				2		1
C O 3	2		1	2	2	3	2			1	2	1	2
C O 4			3		2	2	2		1		1	1	1
C O 5			3		2	3	3		1		2	1	2

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Viva/ Seminar	Practical skill evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark	\checkmark	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B. Sc. CHEMISTRY

Programme	B.Sc Chemistry	B.Sc Chemistry						
Course Title	PHYSICAL CHEM	PHYSICAL CHEMISTRY – I: STATES OF MATTER						
Type of Course	MAJOR/MINOR							
Semester	II							
Academic Level	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	3	_	2	75			
Pre-requisites	NCERT or equivaler https://onlinecourses	nt chemistry s .swayam2.ac.	yllabus of XI .in/nce24_sc(and XII,)7/preview	<u> </u>			
Course Summary	Atoms and molecules form the matter that is recognisable for us in the real world, as gases, liquids and solids. Why would they exist as they are? And why would they behave as they do? This course is designed to introduce first year UG students, the physical chemistry of matter in different states of its existence through theory and laboratory experiments. The course explains the various types of interactions between atoms and molecules and their important role in physical and chemical characteristics of the different states of matter. The course introduces the theory and experimental methods that are commonly used to study the various states of matter.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the basic nature of real gases and understand interactions at molecular levels	U	С	Assignments/Quiz designed by the instructor
CO2	To recognise the significance of various interactions in condensed matter	U	С	Assignments/Quiz designed by the instructor

CO3	To analyse the physical properties of liquids through theory and practical experiments	An	Р	Seminars and exams				
CO4	To explain the regular, periodic arrangement of atoms in solids and appreciate the concept of unit cells	An	Р	Seminars/ exams				
CO 5	To evaluate and understand the importance of the X-ray diffraction technique for characterisation of crystalline solids	Ар	Р	Lab/Discussion/Ass ignments				
CO 6	To execute experiments to determine and tune the various colligative properties of dilute solutions	С	Р	Lab/Viva voce exams				
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)							
# - Fao Know	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(45+30)	
Ι		GASEOUS STATE	15	33
	1	Kinetic theory of gasses: derivation	1	
	2	Maxwell-Boltzmann distribution of molecular	2	
		velocities Average velocity, RMS velocity and		
		most probable velocity (derivations not required)		
	3	Collision theory – Collision diameter- Collision	2	
		number-Collision frequency - Mean free path –		
		Molecular beams (Mention only)		
	4	Real gas- Deviation from ideal behavior-	6	
		Compressibility factor – Virial equation and Virial		
		coefficients- van der Waals equation of state		
		(derivation required)-features of van der Waals		
		equation - Expression of van der Waals equation		
		in virial form and calculation of Boyle temperature		
		- PV isotherms of real gasses – Andrews'		
		experiments - Continuity of states - Isotherm of		
		van der Waals equation		

	5	Critical phenomena - Critical constants -	4	
		Relationship between critical constants and van		
		der Waals constants - Experimental determination		
		of critical constants - Supercritical carbon dioxide		
		and its applications.		
II		LIQUID STATE	8	17
	6	Discussion of different types (with suitable	2	
		examples) of molecular interactions- dipole-		
		dipole, dipole-induced dipole, induced dipole-		
		induced dipole interactions, Lennard-Jones 6-12		
		potential.		
	7	Properties of liquids- Vapour pressure, Refractive	3	
		index, Surface tension- Interfacial tension and		
		viscosity - Poiseuille's equation – Explanation of		
		these properties on the basis of intermolecular		
		forces.		
	8	Hydrogen bonding in water and other polar	2	
		molecules, its relevance in biological systems.		
	9	Liquids on solid surfaces- Hydrophobic and	1	
		Hydrophilic, Superhydrophilic and		
		Superhydrophobic surfaces- simple explanation		
		by using the water drop contact angles on surfaces		
111		SOLID STATE	15	33
	10	Crystalline and amorphous solids- atomic and	2	
		molecular solids- nucleation and growth of		
		crystals.		
	11	Crystalline Materials – Periodicity- Types of	1	
		Close packing and packing fraction.		
	12	Space Lattice - Unit cell (use models)- Lattice	4	
		planes and Miller indices (use models) - 7 crystal		
		systems- 14 Bravais lattices- Types of cubic		
		crystals and their planes- Distance formula for		
		cubic systems- Calculation of crystal density (Use		
	10	of software like Crystal viewer is recommended).	2	
	13	X-ray diffraction- Bragg's law (derivation)-	3	
		Powder and single crystal X-ray diffraction		
		factor		
	1.4	Tactor,	2	
	14	body contered cubic crystals. Analysis of VDD	3	
		potterns of NeCl KCl and CsCl Basic idea of		
		electron and neutron diffraction		
	15	Structural transitions in TiO anatasa rutile and	1	
	15	brookite phases	1	
	16	Concepts of melting point/boiling point and	1	
		molecular/atomic/ionic interactions, Examples:		
		molecular/atomic/ionic interactions, Examples: CO ₂ , N ₂ , H ₂ O, NH ₃ , NaCl, TiO ₂		

	17	Solubility of gases in liquids – Henry's law and its applications	1	
	18	Colligative properties - Relative lowering of	1	
	19	Colligative properties- Elevation in boiling point	1	
		and depression in freezing point		
	20	Colligative properties- Osmotic pressure - Laws of	1	
		technological relevance		
	21	Determination of molecular mass using colligative	1	
		properties		
	22	Solid Solutions: Substitutional and interstitial	2	
		Mixtures and Composites		
		Colloids: Dispersed phase and dispersing medium.		
		Sol, Emulsion, Foam, and Aerosol, Tyndall effect,		
		Nephelometry		
V		PHYSICAL CHEMISTRY PRACTICALS	30	
		A minimum of 5 practical experiments out of which		
		ONE EACH from sections 1, 2 and THREE from section 3 must be performed and reported. For		
		plots/graphs, suitable softwares may be used and		
		printed hard copies may be presented. Practical records		
		may be in handwritten or computer-typed printed form.		
		Section 1		
		1. Determination of cryoscopic constant (K _t) of solid		
		solvent using a solute of known molecular mass.	2	
		(Solvent: Naphthalene, biphenyl Solute: Naphthalene,	3	
		bipnenyi, 1,4-dichlorobenzene, dipnenyiamine)		
		2. Determination of molecular mass of the solute using		
		a solvent of known cryoscopic constant (K _f).		
		(Solvent: Naphthalene, biphenyl Solute: Naphthalene,		
		biphenyl, 1,4-dichlorobenzene, diphenylamine)	3	
		Section 2		
		3 Determination of molal transition point depression		
		constant (K) of salt hydrate using solute of known		
		molecular mass.		
		(Salt hydrates: Na ₂ S ₂ O ₃ .5H ₂ O, CH ₃ COONa.3H ₂ O. Solutes:		
		Urea, Glucose)	3	
		1 Determination of male when many of the solution is	_	
		4. Determination of molecular mass of the solute using a solvent of known molal transition point depression		
		constant (K.).		
		(Salt hydrates: Na ₂ S ₂ O ₃ .5H ₂ O, CH ₃ COONa.3H ₂ O. Solutes:	3	
		Urea, Glucose)	5	

	Section 3		
	 Determination of viscosity of various liquids using Ostwald's viscometer. Study of glycerine-water system and determination of percentage of glycering using viscometer falot 	3	
	 percentage of glycerine using viscometer [plot composition (c) <i>versus</i> time of flow x density of the solution (td)]. 7. Determination of the surface tension of a liquid or a dilute solution (NaCl / surfactant) using a stalagmometer (drop number method). 	3	
	8. Determination of composition of glycerine-water mixture by refractive index method.	3	
	9. Determination of refractive indices of KCl solutions of different concentrations and unknown concentration of KCl solution.	3	
	10. Indexing powder XRD patterns and determination of unit cell parameters of simple and/or bcc and/or fcc systems (Instructors must provide the powder XRD patterns and ask students to index it and calculate unit cell parameters)	3	
		3	
	References:		
	Module I o IV		
	 Physical Chemistry: Thermodynamics, Structure and Change, 10th Edition, P. Atkins and J. de Paula, (W. H Freeman and Company, New York) D. A. McQuarrie, J. D. Simon, Physical Chemistry – A Molecular Approach, (Viva, 2001.) Solid State Chemistry and its Applications, 2nd Edition, A R West, (Wiley, 2014) 		
	 Module V 4. Findlay's Practical Physical Chemistry, Ninth Edition, Revised and Edited by B P Levitt, (Longman, London, 1973) 5. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008 6. R. C. Das, B. Behra, Experiments in Physical Chemistry, Tata McGraw Hill, New Delhi, 1983. 		

Further reading
7. 1. B. R. Puri, L. R. Sharma, M. S. Pathania,
Principles of Physical Chemistry, 46th Edn., Vishal
Publishing Company, New Delhi, 2013.
8. G. M. Barrow, Physical Chemistry, 5th Edn., Tata
McGraw Hill Education, New Delhi, 2006.
9. F. Daniels, R. A. Alberty, Physical Chemistry, 5th
Edn., John Wiley and Sons, Canada, 1980.
10. D. P. Shoemaker, C. W. Garland, Experiments in
Physical Chemistry, McGraw-Hill Book Company, New
York, 1962.
11. W. G. Palmer, Experimental Physical Chemistry,
Cambridge University Press, Cambridge, 2009

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO 4	PS O 5	PS O 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	-	3	2	3	2	2	-	2	-	1
CO 2	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 3	3	2	-	-	3	2	3	2	1	-	2	-	1
CO 4	3	2	-	-	3	3	3	2	1	-	1	-	1
CO 5	3	2	2	1	3	3	3	2	1	-	3	-	1
CO 6	2	-	3	3	3	3	3	2	1	2	3	2	1

Correlation Levels:

Level	Correlation
-	Nil

1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Midterm Exam
- Practical exam (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment /viva	Practical skill evaluation	End Semester Examinations
CO 1		\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark			\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemistry						
Course Title	ORGANIC CHEMISTRY 1						
Type of Course	MAJOR /MINOR						
Semester	Ш						
Academic Level	200 - 299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basics of organic chemistry-Functional groups, Homologous series, Nomenclature and isomerism						
Course Summary	This course explores Reactions and med stereochemistry	basics of or chanism of	rganic chemi important	stry reaction functional	mechanism, groups and		

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the basics of Organic chemistry	U	С	Test /Seminar
CO2	To understand the basic concepts of reaction mechanisms	U	р	Discussion/ Assignment
CO3	To recognize the various types of organic reactions and reaction intermediates	An	Р	Quizzes/Test
CO4	To realise the importance of stereoisomerism, optical activity and chirality	Ар	Р	Discussion/Seminar /Assignment
CO5	To enable the students to improvise Molecular models	Ар	Р	Assignment/Test

CO6	To empower students in various	Ap	Р	Lab work/Viva				
	separation and purification							
	techniques							
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowledge (M)								

Detailed Syllabus:

Module	Unit	Hrs	Marks	
Ι	Introduction		12	26
	1 IUPAC Nomenclature of multifunctional acyclic and cyclic compounds. Structural isomerism.		2	
	2 Hybridization and bonding in organic compounds (methane, ethane, ethylene and acetylene		2	
	3 Localised and delocalised bonding. Hydrogen bonding, effect of hydrogen bonding on physical and chemical properties of compounds		1	
	4	Organic acids and bases	2	
	5	Basics of MO theory as applied to organic molecules -Ethylene and Buta-1,3-diene.	3	
	6	Aromaticity-Huckel's rule for aromaticity (Benzenoid compounds)	2	
II		Organic reaction mechanisms	12	26
	7	Types of bond fission-Homolytic and Heterolytic fission	1	
	8	Arrow formalism used in reaction schemes.	1	
	9	Electrophiles and Nucleophiles	1	
	10	Electron displacement Effects: Inductive effect and Field effect, Steric effect- Acidity and basicity of organic compounds based on Field effect and steric effect.	2	
	11	Electromeric effect, Mesomeric effect	2	
	12	Hyperconjugation- Stability of alkenes.	1	
	13	Reactive intermediates: Structure, formation and stability of carbocations, carbanions, free radicals, carbenes and nitrenes.	3	
	14	Pericyclic reactions and its classifications	1	

III	Stereochemistry-I				
	15	3			
	16 Inter conversion of different projections of L-tartaric acid and 3- chloro-2-butanol.				
	17Conformational Isomerism – Conformational analysis of Ethane, n- butane and cyclohexane with PE diagram.				
	18	Conformation of mono substituted cyclohexanes. Relative stability of conformations.	2		
	19 Configurational isomerism: Geometrical isomerism in alkenes, cycloalkanes and oximes. Cis-trans, Syn-Anti and E-Z notations, sequence rule.				
IV		Purification and Characterization Techniques	7	16	
	20	Distillation- Simple, fractional, steam and vacuum distillations	2		
	21 Recrystallisation, sublimation, solvent extraction.		2		
	22	Chromatography, stationary phase, mobile phase, Rf values, - TLC, Column chromatography, HPLC and GC (basic concepts only).	3		
V		Practicals	30		
	1.	Introduction to organic lab	4		
	2	 Distillation of Annine, Distillation of Limonene (from orange peels) Purification of organic compounds by crystallization using the following solvents: a. Water b. Alcohol Sublimation of a dicarboxylic acid/Naphthalene Molecular model construction and conformation of ethane Molecular model construction of Ethylene or Acetylene Molecular model construction of acetaldehyde and Cyclobeyane 	20		
	3	Open ended	6		

References

1. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

3. Kalsi, P. S., Stereochemistry Conformation and Mechanism; 8thEdn, New Age International, 2015

4. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.

5. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.

6. K. S. Tewari, N. K. Vishnoi, S. N. Mehrotra, *A Textbook of Organic Chemistry*, 2nd Edn., Vikas Publishing House, New Delhi, 2004.

7. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th Edn., Pearson Education, Noida, 2014.

8. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*, 4th Edn., Pearson Education, Noida, 2011.

9. Arthur I. Vogel, *Elementary Practical Organic Chemistry- Small Scale Preparations*, 2nd Edn., Pearson Education, Noida, 2013

10.An Improved Method for the Extraction and Thin-Layer W Chromatography of Chlorophyll a and b from Spinach Hao T. Quach, Robert L. Steeper, and G. William Griffin, J Chem Edn, 2004, 81, 385

11. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, S D Sarkar and L Nahar, John Wiley and sons, Ltd.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1						3				1	1	1
CO 2	2						2				2		1
CO 3	3						2				2		1
CO 4				2	2		2				2		1
CO 5	2						2		1	1	1	1	1
CO 6			3			2	2		1		2	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation	
-	Nil	
1	Slightly / Low	
2	Moderate /	
	Medium	
3	Substantial /	
	High	

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignm ent/viva/s eminar	Practical skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2		\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		✓
CO 6		\checkmark	\checkmark	\checkmark