Programme	B.Sc Mathematics Honours				
Course Code	MAT1MN104				
Course Title	MATHEMAT	ICAL LOGIC, SET THEC	ORY AND CON	MBINATORICS	
Type of Course	Minor	Minor			
Semester	Ι	Ι			
Academic Level	100 - 199				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Higher Second	ary Mathematics.			
Course	This course e	xplores mathematical logic	, set theory, a	and combinatorics,	
Summary	covering fund	amental ideas like proposi	itions, logical	equivalences, and	
	quantifiers. It introduces set theory concepts such as sets, operations with sets,				
	and cardinality	and cardinality. Additionally, it delves into functions and matrices, along with			
	topics like p	permutations, combinations	, and discret	te probability in	
	combinatorics.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Analyse propositional logic and	An	Р	Internal
	equivalences	1		Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO2	Apply set theory and operations	Ap	С	Internal
				Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO3	Implement functions, matrices,	Ap	Р	Internal
	and combinatorics			Exam/Assignment/
		1		Seminar/ Viva / End
				Sem Exam
* - R	emember (R), Understand (U), Aj	oply (Ap), An	alyse (An), E	Evaluate (E), Create (C)
# - Fa	ctual Knowledge(F) Conceptual Knowledge	owledge (C) Pr	ocedural Knov	vledge (P) Metacognitive
Know	ledge (M)			

Detailed Syllabus:

Text: Discrete Mathematics with Applications, (1/e), Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.

Modulo	Unit	Content	Hrc	Fyt
wiodule	Omt	Content	nrs	Ext. Marks
			(48	
			+12)	(70)
Ι		Mathematical Logic		
	1	1.1 Propositions: Conjunction, Disjunction.		
	2	1.1 Propositions: Converse, Inverse and Contrapositive.		
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).		
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)	15	Min. 15
	5	1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)		
II	Set Theory			
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).		
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).		
	9	2.2 Operations with Sets – up to and including example 2.21.	12	Min. 15
	10	2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).		
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).		
III		Functions and Matrices		

	12	3.1. The Concept of Functions - up to and including example3.2	10	Min.
	13	3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional).		15
	14	3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).		
	15	3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).		
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).		
IV		Combinatorics and Discrete Probability		
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)		
	18	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)		
	19	6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)	11	Min. 15
	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)		
	21	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)		
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)		
V			12	
	Open Ended			
	1.	tion an Multip Probabi , Regul	d Dication ility a-Falsie	

References:

- 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
- 2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
- 3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	>	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B.Sc Mathematics Honours						
Course Code	MAT2MN104						
Course Title	GRAPH THE	GRAPH THEORY AND AUTOMATA					
Type of Course	Minor	Minor					
Semester	II						
Academic Level	100 - 199	100 - 199					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Second	ary Mathematics					
Course	This course int	roduces students to Graph Th	neory and Autor	nata, covering			
Summary	topics such as	graphs, adjacency matrice	s, and isomorp	hic graphs in			
	Module I. In I	Module II, it explores Euler	ian and Hamil	tonian graphs,			
	including paths, cycles, and connected graphs. Module III focuses on						
	Planar Graphs, Graph Coloring, Trees, and Spanning Trees. Finally,						
	Module IV d	lelves into Automata, cov	ering concepts	like formal			
	languages, grau	mmars, and finite state autom	nata.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Graph Structures and	Е	С	Internal
	Properties			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO2	Apply Algorithms to Eulerian and	Ар	Р	Internal
	Hamiltonian Graphs			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO3	Explore Formal Languages and	E	С	Internal
	Finite State Automata			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
* - Re # - I Metace	member (R), Understand (U), Appl Factual Knowledge(F) Conceptual ognitive Knowledge (M)	y (Ap), Anal Knowledge	yse (An), Eva (C) Procedu	luate (E), Create (C) ral Knowledge (P)

Detailed Syllabus:

Text: Discrete Mathematics with Applications, Thomas Koshy, Academic Press (2003), ISBN:
978-0124211803.

	T T •/		TT	T (
Module	Unit	Content	Hrs	Ext. Morks
			(48	WIATKS
			+12)	(70)
Ι		Graphs	,	
	1	8.1 Graphs - Graph, Simple Graph (Example 8.3 is optional).		
	2	8.1 Graphs - Adjacency and Incidence, Degree of a Vertex, Adjacency Matrix (Example 8.5 and proof of Theorem 8.2 are optional).		
	3	8.1 Graphs – Subgraph of a Graph.	14	Min. 15
	4	8.1 Graphs - Complete Graph, Cycle and Wheel Graphs (Fibonacci and Paraffins, Lucas and Cycloparaffins are optional).		
	5	8.1 Graphs - Bipartite graph, Complete Bipartite Graph, Weighted Graph (Graphs and Telecommunications, Graphs and Local Area Networks and A Generalised Handshake Problem are optional).		
	6	8.3 Isomorphic Graphs.		
II		Eulerian and Hamiltonian graphs		
	7	8.4 Paths, Cycles and Circuits – Path, Independent Subsets of the Vertex set, Cycle and Circuit (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).	10	Min.
	8	8.4 Paths, Cycles and Circuits – Connected Graphs (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).		15
	9	8.5 Eulerian and Hamiltonian graphs- Eulerian Graph (Proof of theorem 8.7, example 8.26, Algorithm Eulerian graph, example 8.27, Algorithm Eulerian circuit, proof of theorem 8.8, example 8.31).		

	10	8.5 Eulerian and Hamiltonian graphs- Hamiltonian Graph (Knight's tour problem, example 8.34, Travelling Salesperson Problem, Example 8.35 are optional)		
III	Planar Graphs and Trees			
	11			
	12	8.6 Planar Graphs- Degree of a Rregion, Homeomorphic Graphs.	11	Min.
	13	8.7 Graph Coloring- Graph Coloring, Chromatic Number, The Four-Color Problem (Example 8.27 is optional).		15
	14	9.1 Trees- Trees (Proof of theorem 9.1 and 9.2 are optional).		
	15	9.2 Spanning Trees - Spanning Trees, Kruskal's Algorithm for a Spanning Tree.		
IV		Automata		
	16			
	17	11.1 Formal Languages - Equality of Words, Concatenation of Languages (Examples 11.2, 11.3, 11.5 and Proof of Theorem 11.1 are optional).	13	Min.
	18	11.1 Formal Languages – Kleene Closure.		15
	19	11.2 Grammars – Grammars, Phase Structure Grammar.		
	20	11.2 Grammars – Derivation and Language.		
	21	11.3 Finite State Automata – up to and including Example 11.30 (Example 11.27 is optional).		
	22	11.3 Finite State Automata – Equivalent Finite State Automata up to and including example 11.35.		
V		Open Ended Module	12	
	Comp Digrap	uter representation of graphs, minimal spanning trees, roote ohs and Finite state machines	d trees,	

References:

1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).

2. Discrete Mathematics with Applications (4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).

3. A First Look at Graph Theory, John Clark and Allan Holton, Allied Publishers (1991).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	1	1	0	3	0	0
CO 2	2	1	2	0	1	1	2	0	0
CO 3	2	1	2	0	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	√	✓	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathematics Honours						
Course Code	MAT3MN204						
Course Title	BOOLEAN A	LGEBRA AND SYSTEM	OF EQUATIO	NS			
Type of Course	Minor						
Semester	III						
Academic Level	200-299						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
	per week		per week				
	4	4	-	60			
Pre-requisites	MAT1MN203	and MAT2MN203					
Course Summary	This course comprises four main modules: Lattice, Boolean Algebra, System of Equations, and Eigenvalue and Eigenvectors. Module I introduce concepts like ordered sets and lattices, while Module II explores Boolean Algebra and its applications. Module III covers linear systems of equations, including Gauss elimination and determinants. Finally, Module IV delves into Eigenvalue and Eigenvectors, offering insights into matrix properties and applications.						

Course Outcome

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Lattices and Boolean	E	C	Internal
	Algebra			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO2	Apply Matrix Operations and	Ap	Р	Internal
	Linear Systems			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO3	Investigate Eigenvalue and	An	Р	Internal
	Eigenvector Problems			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
* - Re # - I	Factual Knowledge(F) Conceptual	y (Ap), Anal Knowledge	yse (An), Eval (C) Procedu	luate (E), Create (C) ral Knowledge (P)
Metac	ognitive Knowledge (M)			

Detailed Syllabus:

Textboo	1. Theory and Problems of Discrete mathematics (3/e), Seymour Lipschutz, Marc							
k	Lipson, Schaum's Outline Series.							
	2. Advanced Engineering Mathematics (10/e), Erwin Kreyzsig, Wiley India.							
Module	Uni t	Content	Hrs	Ext. Morka				
	ι		(48	Marks				
			+12)	(70)				
Ι		Lattice (Text 1)	12	Min 15				
	1	14.2 Ordered set						
	2	14.3 Hasse diagrams of partially ordered sets						
	3	14.5 Supremum and Infimum						
	4	14.8 Lattices						
	5	14.9 Bounded lattices, 14.10 Distributive lattices						
	6	14.11 Complements, Complemented lattices						
II		Boolean Algebra (Text 1)	10	Min 15				
	7	15.2 Basic definitions						
	8	15.3 Duality						
	9	15.4 Basic theorems						
	10	15.5 Boolean algebra as lattices						
	11	15.8 Sum and Product form for Boolean algebras						
	12	15.8 Sum and Product form for Boolean algebras - Complete Sum and Product forms						
III		System of Equations (Text 2)	14	Min 15				
	13	7.1 Matrices, Vectors: Addition and Scalar Multiplication						
	14	7.2 Matrix Multiplication (Example 13 is optional)						
	15	7.3 Linear System of Equations- Gauss Elimination						
	16	7.4 Linear Independence- Rank of a matrix- Vector Space (Proof Theorem 3 is optional)						

	17	7.5 Solutions of Linear Systems- Existence, Uniqueness (Proof of Theorem 1, Theorem 2 and Theorem 4 are optional)						
IV		Eigen Value and Eigen Vectors (Text 2)	12	Min 15				
	18	7.6 Second and Third Order Determinants- up to and including Example 1						
	19	7.6 Second and Third Order Determinants- Third order determinants						
	20	7.7 Determinants- Cramer's Rule (Proof of Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)						
	21	7.8 Inverse of a Matrix- Gauss- Jordan Elimination (Proof Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)						
	22	8.1 The Matrix Eigenvalue Problem- Determining Eigenvalues and Eigenvectors (Proof of Theorem 1 and Theorem 2 are optional)						
V		Open Ended Module	12					
	Relation on a set, Equivalence relation and partition, Isomorphic ordered sets, Well- ordered sets, Representation theorem of Boolean algebra, Logic gates, Symmetric, Skew-symmetric and Orthogonal matrices, Linear Transformation.							
Reference	es:							
1. Howard	l Anto	n & Chris Rorres, Elementary Linear Algebra: Application (11/e) : V	Viley				
2. Ron La	rson, I	Edwards, David C Falvo : Elementary Linear Algebra (6/e), I	Houghto	n Mi_in				

Harcourt Publishing Company (2009)

3. Thomas Koshy - Discrete Mathematics with Applications-Academic Press (2003)

4. George Gratzer, Lattice theory: First concepts and distributive lattices. Courier Corporation (2009)

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	1	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	√	√	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark