Programme	B. Sc. Mathematics Honours							
Course Code	MAT1MN102	MAT1MN102						
Course Title	DIFFERENTIAL CALCULUS							
Type of Course	MINOR							
Semester	Ι							
Academic Level	100-199							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Set theory along with	an understanding of the r	eal number sy	vstem.				
Course Summary	This course provides	a foundational understand	ling of calculu	is concepts: From				
	the beginning section	s students learn about lim	its (including	one-sided limits				
	and limits at infinity),	, continuity (definitions an	nd properties),	, and the				
	intermediate value the	eorem. Modules II and III	cover differe	ntiation techniques,				
	including tangent line	es, the definition of deriva	tives, rules of	differentiation				
	(product, quotient, ch	ain), implicit differentiati	on, and advan	ced topics like				
	L'Hopital's Rule for in	ndeterminate forms. Mod	ule IV focuses	s on the analysis of				
	functions, discussing concepts such as increasing/decreasing functions,							
	concavity, inflection	points, and techniques for	· identifying re	elative extrema and				
	graphing polynomials	5.						

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools used			
		Level*	Category#				
CO1	Analyse limit, continuity and differentiability of a function	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Apply rules and techniques of differentiation to solve problems, also find limit in indeterminate forms involving transcendental functions	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Draw a polynomial function by analysing monotonicity, concavity and point of inflection using derivatives test	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowle	dge (M)						

Detailed Syllabus:

Text book		Anton, Howard, Irl C. Bivens, and Stephen Davis. <i>Calculus: early</i>				
Module	Unit	Content	Hrs 60	External Marks (70)		
		Fundamentals of Limits and Continuity				
	1	Section 1.1: Limits (An Intuitive Approach) - Limits, One-Sided Limits, The Relationship Between One- Sided and Two Sided Limits				
	2	Section 1.2: Computing Limits - Some Basic Limits, Limits of Polynomials and Rational Functions as $x \rightarrow q$				
	3	Section 1.2: Computing Limits - Limits involving Radicals, Limits of Piecewise-Defined Functions				
Ι	4	Section 1.3: Limits at Infinity; End Behaviour of a Function Limits of Rational Functions as $x \to \pm \infty$ - A Quick Method for Finding Limits of Rational Functions as $x \to +\infty$ or $x \to -\infty$	14	Min.15		
	5	Section 1.5: Continuity - Definition of Continuity, Continuity on an interval, Some Properties of Continuous Functions,				
	6	Section 1.5: Continuity - Continuity of Polynomials and Rational Functions, Continuity of Compositions, The Intermediate- Value Theorem.				
		Differentiation				
	7	Section 2.1: Tangent Lines and Rates of Change - Tangent lines, Slopes and Rate of Change				
	8	Section 2.2: The Derivative Function - Definition of the Derivative Function-Topics up to and including Example 2.				
п	9	Section 2.3: Introduction to Techniques of Differentiation - Derivative of a Constant, Derivative of Power Functions, Derivative of a Constant Times a Function, Derivatives of	14	Min.15		
	10	Sums and Differences, Higher Derivatives Section 2.4: The Product and Quotient Rules - Derivative of a Product, Derivative of a Quotient, Summary of Differentiation Rules.				
	11	Section 2.5: Derivatives of Trigonometric Functions - Example 4 and Example 5 are optional				
	12	Section 2.6: The Chain Rule Derivatives of Compositions, An Alternate Version of the Chain Rule, Generalized Derivative Formulas				
		Differentiation contd :				
	13	Section 3.1: Implicit Differentiation - Implicit Differentiation (sub section)	10			

		Section 3.2: Derivatives of Logarithmic Functions -		
	14	Derivative of Logarithmic Functions (sub section)		
	14	X.		
III		Section 3.3: Derivatives of Exponential and Inverse		
	15	Trigonometric Functions -		
		Derivatives of Exponential Functions		Min 15
	16	Trigonometric Functions -		WIII.13
	10	Derivatives of the Inverse Trigonometric Functions		
		Section 3.6: L'Hopital's Rule: Indeterminate Forms -		
	17	Inderminate Forms of Type 0/0, Indeterminate Forms of		
		Type $^{\infty}/_{\infty}$		
		Section 3.6: L'Hopital's Rule; Indeterminate Forms -		
	18	Inderminate Forms of Type $0 \cdot \infty$, Indeterminate Forms of		
		Type $\infty - \infty$		
		Applications of Differentiation		
	10	Conceptity -		
	17	Increasing and Decreasing Functions		
	20	Section 4.1: Analysis of Functions I: Increase, Decrease, and		
		Concavity -		
		Concavity, Inflection Points		N <i>G</i> , 17
IV		Section 4.2: Analysis of Functions II: Relative Extrema;	10	Min 15
	21	Graphing Polynomials -		
		Relative Maxima and Minima, First Derivative Test, Second		
		Section 4.2: Analysis of Functions II: Palative Extreme:		
		Graphing Polynomials		
	22	Geometric Implications of Multiplicity, Analysis of		
		Module V (Open Ended)		
		Infinite Limits		
		Differentiability, Relation between Derivative and		
		Continuity Deremetric Equations, Deremetric Currues		
		Inverse Trigonometric Functions and their derivatives	12	
		Taylor series expansion of functions		
V		Maclaurin series of sin x, $\cos x$, $\tan x$, $\log(1+x)$, $\log(1-x)$ etc.		
		Binomial expansion of $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ etc		
		Binomial expansion of $\frac{1}{(1+x)}$, $\frac{1}{(1-x)}$, $\frac{1}{\sqrt{1+x}}$, $\frac{1}{\sqrt{1-x}}$ etc		
		Different coordinate systems: - Cartesian, Spherical, and		
		Cylindrical coordinates		
		Indeterminate Forms of Type $0^0 \ \infty^0 \ 1^\infty$		
		Graphing Rational Functions		
Refere	nces			
	1	Calculus and Analytic Geometry 9 th Edition George R The	mae II	and Rose
	1	L. Finney, Pearson Publications.	5111 0 5 J1	

2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) ISBN-13: 978-0-
	534-46579-7.
3	Marsden, Jerrold, and Alan Weinstein. Calculus I. Springer Science &
	Business Media, 1985.
4	Stein, Sherman K. Calculus in the first three dimensions. Courier Dover
	Publications, 2016.

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	2
CO 2	3	1	3	1	2	1	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	√	~	~	√
CO 3	~	√	~	\checkmark	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT2MN102	MAT2MN102						
Course Title	CALCULUS AND	MATRIX ALGEBRA						
Type of Course	MINOR							
Semester	II							
Academic Level	100-199							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Calculus							
Course Summary	Students learn about a	intiderivatives, the indefin	ite and definit	e integrals, Riemann				
	sums, and the Funda	mental Theorem of Calcu	ulus. Course e	explores the average				
	value of functions, ev	aluating definite integrals	s by substitutio	on, calculating areas				
	between curves, and	l finding the length of	plane curves.	Next it introduces				
	functions of multiple	variables, including notat	ion, graphs, lii	mits, continuity, and				
	partial derivatives for functions of two or more variables. Course also focuses on							
	matrix algebra, de	terminants, eigenvalue	problems (i	including complex				
	eigenvalues), and orth	hogonal matrices and their	r properties.					

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools used	
CO1	Demonstrate proficiency in applying calculus techniques to solve analytical and geometrical problems involving indefinite and definite integrals, substitution methods, and integration by parts.	Ap	Category# C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam	
CO2	Apply multivariable calculus concepts, including functions of multiple variables, limits, continuity, and partial derivatives, to model and analyse real-world phenomena and mathematical problems.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam	
CO3	Apply linear algebra principles, such as matrix operations, determinants, and eigenvalue problems, to analyze and solve systems of equations and geometric problems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam	
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Detailed Syllabus:

	1. Howard Anton, Bivens and Stephen Davis, Calculus- Early Transcendentals (10 th							
Text	Edition).							
Book	2	. Advanced Engineering Mathematics(6/e): Dennis G Zill Jones &	Bartle	tt, Learning,				
		LLC (2018) ISBN: 9781284105902						
			Hrs	External				
Module	Unit	Content	60	Marks (70)				
		Indefinite and Definite Integrals	12	Min 15				
	1	Section 5.2: The Indefinite Integral - Antiderivatives, The						
		Indefinite Integral, Integration Formulas, Properties of the						
		Indefinite Integral, Integral Curves						
	2	Section 5.3: Integration by Substitution -						
		u-Substitution, Easy to Recognize Substitutions, Less						
I		Apparent Substitutions						
	3	Section 5.5: The Definite Integral -						
		Riemann Sums and the Definite Integral, Properties of the						
	4	Definite Integral.	-					
	4	Section 5.6: The Fundamental Theorem of Calculus -						
		Ine Fundamental Theorem of Calculus (sub section), The Relationship Retween Definite and Indefinite Integrals						
		Techniques and Applications	13	Min 15				
		Section 5.8: Average Value of a Function and its Applications	15	WIII 13				
	5	- Average Value of a Continuous Function (up to and						
	5	including Example 2 only)						
		Section 5.9: Evaluating Definite Integrals by Substitution -						
	6	Two Methods for Making Substitutions in Definite Integrals						
		Section 6.1: Area Between Two Curves -						
	7	Area Between $y = f(x)$ and $y = g(x)$, Reversing the Roles						
т		of x and y						
11	8	Section 6.4: Length of a Plane Curve - Arc Length						
		Section 7.2: Integration by Parts - The Product rule and						
	9	Integration by Parts, Guidelines for Integration by Parts,						
		Repeated Integration by Parts						
		Section 7.5: Integrating Rational Functions by Partial						
	10	Fractions - Partial Fractions, Finding the form of a Partial						
	10	(Example 4 is optional) Integrating Improper Pational						
		Example 4 is optional), integrating improper Rational						
		Multi Variable Calculus	10	Min 15				
		Section 13.1: Functions of Two or More Variables:						
	11	Notation and Terminology, Graphs of Functions of Two						
		Variables.						
III	10	Section 13.1: Functions of Two or More Variables:						
	12	Level Curves, Level Surfaces.						
	13	Section 13.2: Limits and Continuity - Limit along Curves						
	14	Section 13.2: Limits Continuity - Continuity						
	15	Section 13.3: Partial Derivatives -						

		Partial Derivatives of Functions of Two Variables, The		
		Partial Derivative Function, Partial Derivative Notation,		
		Implicit Partial Differentiation, Partial Derivatives and		
		Continuity		
		Section 13.3: Partial Derivatives		
	16	Partial Derivatives of Functions with more than Two		
	10	Variables, Higher order Partial Derivatives, Equality of		
		Mixed Partials.		
		Linear Algebra Essentials	13	Min 15
	17	Section 8.1: Matrix Algebra		
	18	Section 8.2: Systems of Linear Algebraic Equations		
	19	Section 8.8: The Eigenvalue Problem -		
		Topics up to and including Example 4		
IV	20	Section 8.8: The Eigenvalue Problem -		
	20	Topics from Complex Eigenvalues onwards		
	21	Section 8.10: Orthogonal Matrices -		
	21	Topics up to and including Theorem 8.10.3	-	
	22	Section 8.10: Orthogonal Matrices -		
		Topics from Constructing an Orthogonal Matrix onwards		
		Module V (Open Ended)	12	
		Fundamental theorems in Vector Calculus such as Green's		
		theorem, divergence theorem, and the Stokes' theorem.		
		Trigonometric Substitutions		
		Integrating Trigonometric Functions		
		Volume of Solids of Revolution, Area of Surfaces of		
V		Revolution		
		The Chain Rule in Partial Differentiation		
		Directional Derivatives and Gradients, Tangent Planes and		
		Normal Vectors		
		Basics of Vector Calculus including the differential operators		
		such as gradient, divergence and curl.		
		Simpsons Rule, Trapezoidal rule in Numerical Integration		
		Algebra of Complex Numbers		
Refere	nces			
	1	Calculus and Analytic Geometry, 9 th Edition, George B. Tho	mas Jr	and Ross L.
	-	Finney, Pearson Publications.		
	2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) I	SBN-1	.3: 978-0-
		534-46579-7.		
	3	Marsden, Jerrold, and Alan Weinstein. <i>Calculus I.</i> Springer Sc Media 1985	ience &	& Business
	1	Stein Sherman K Calculus in the first three dimensions Cour	ier Do	Vor
	-	Publications, 2016.		v 01
	5	Kreyszig, Erwin. Advanced Engineering Mathematics 9th Edit	ion wit	h Wiley Plus
		Set. Vol. 334. US: John Wiley & Sons, 2007.		-
	6	Elementary Linear Algebra, Applications version, 9 th edition, and Chriss Rorres	Howa	rd Anton

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	2	1	2	0	0
CO 3	2	1	2	1	2	1	2	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	✓	\checkmark
CO 2	~	√	√	~	√
CO 3	~	√	~	~	1

Programme	B. Sc. Mathematics Honours						
Course Code	MAT3MN202						
Course Title	DIFFERENTIAL E	QUATIONS AND FOU	RIER SERIE	S			
Type of Course	Minor						
Semester	III						
Academic Level	200-299						
Course Details	Credit Lecture/Tutorial Practicum Total Hours						
	per week per week						
	4	4	-	60			
Pre-requisites	Basic Calculus and fa	amiliarity with Real Numb	pers				
Course Summary	In Module I students	s are introduced to variou	us types of di	fferential equations,			
	including linear, sepa	rable, exact equations, an	d Bernoulli's e	equation. Module II			
	delves deeper into li	near equations, both hon	nogeneous and	d nonhomogeneous.			
	Module III introduce	es Fourier series, includ	ing trigonome	etric series, Fourier			
	cosine and sine series, and half-range expansions. Module IV transitions into						
	algebra of complex numbers, , and functions of complex variables, including						
	analytic functions an	d the Cauchy-Riemann eq	uations, which	n are fundamental in			
	complex analysis.						

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Apply various methods, such as separation of variables, linear, and exact equations, integrating factors, and substitution, to solve differential equations, including those with constant coefficients and Cauchy-Euler equations.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Analyse and solve partial differential equations, including separable ones, and comprehend Fourier series and their applications in solving differential equations and understanding periodic function	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Apply complex number theory, including arithmetic operations, polar forms, powers, roots, sets in the complex plane, functions of a complex variable, and Cauchy-Riemann equations, to analyze and solve real-world problems in various fields.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
* - Rem # - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Knowle	edge (M)		- . ,	-			

Detailed Syllabus:

Text Book	Advanced Engineering Mathematics(6/e) : Dennis G Zill, Jones & Bartlett, Learning, LLC(2018)ISBN: 978-1-284-10590-2						
Module	Unit	Content	Hrs 60	External Marks (70)			
		Foundations of Differential Equations					
	1	Introduction to Differential Equations Section 1.1: Definitions and Terminology Introduction, A Definition, Classification by Type, Notation, Classification by Order, Classification by Linearity, Solution.					
	2	Section 2.2: Separable Equations Introduction, A Definition, Method of Solution.	_				
Ι	3	Section 2.3: Linear Equations Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem	10				
	4	Section 2.4: Exact Equations Introduction, Differential of a Function of Two Variables (Definition 2.4.1 and Theorem 2.4.1 only), Method of Solution.		Min 15			
	5	Section 2.4: Exact Equations Integrating Factors	-				
	6	Section 2.5: Solutions by Substitutions Bernoulli's Equation					
		Linear Differential Equations					
	7	Section 3.1: Theory of Linear Equations 3.1.2 Homogenous Equations, Linear Dependence and Independence, Solutions of Differential Equations,					
II	8	Section 3.1: Theory of Linear Equations 3.1.3 Nonhomogeneous Equations, Complementary Function					
	9	Section 3.3: Homogeneous Linear Equations with Constant Coefficients Introduction, Auxiliary Equation.	11	Min 15			
	10	Section 3.4: Undetermined Coefficients Introduction, Method of Undetermined Coefficients (Topics up to and including Example 4.)					
	11	Section 3.6: Cauchy-Euler Equations Cauchy-Euler Equation (Second Order Only), Method of Solution.					
		Fourier Series					
	12	Section 12.2: Fourier Series Trigonometric Series (Definition 12.2.1 onwards), Convergence of a Fourier Series, Periodic Extension		Min 15			
III	13	Section 12.3: Fourier Cosine and Sine Series Introduction, Even and Odd Functions, Properties, Cosine and Sine Series (Definition 12.3.1 onwards).	13				
	14	Section 12.3: Fourier Cosine and Sine Series Half-Range Expansions.					

		Section 13.1: Separable Partial Differential Equations		
	15	Introduction, Linear Partial Differential Equation, Solution of		
		a PDE, Separation of Variables.		
	16	Section 13.1: Separable Partial Differential Equations		
	10	Classification of Equations.		
		Introduction to Complex Analysis		
		Section 17.1: Complex Numbers		
	17	Introduction, A definition, Terminology, Arithmetic		
		Operations, Conjugate, Geometric Interpretation		
		Section 17.2: Powers and Roots		
	18	Introduction, Polar Form, Multiplication and Division,		
		Integer Powers of z.		
	1.0	Section 17.2: Powers and Roots		
IV	19	DeMoivre's Formula, Roots.		
	20	Section 17.3: Sets in the Complex Plane	14	Min 15
		Introduction. Terminology.		
		Section 17.4: Functions of a Complex Variable		
	21	Introduction, Functions of a Complex Variable, Limits and		
		Continuity Derivative Analytic Functions		
		Section 17.5: Cauchy- Riemann Equations		
	22	Introduction A Necessary Condition for Analyticity		
		Harmonic Functions Harmonic- Conjugate Functions		
		Module V (Open Ended)	12	
		Initial Value Problems		
	Differential Equations as Mathematical Models			
		Method of Variation of Parameters in solving DE		
V		Solving DE with the Runge-Kutte Method		
•		Interpolation Extrapolation		
		Classical PDFs and Boundary Value Problems		
		Heat Equation		
		Wave Equation		
		Fourier Transform		
D.C			<u> </u>	
Referen	nces			
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 8th Editi	on, W	iley
	Student Edition.			
	2	Mathematics For Engineers and Scientist, Alan Jeffrey, Sixth E	Edition	
	3	Complex Analysis A First Course with Applications (3/e), Den	nis Zil	1 & Patric
		Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-94	61-6	

Note: Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	3	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	✓	\checkmark
CO 2	~	√	~	~	√
CO 3	~	√	~	~	1